
BFFH uses DHALL for Config-File structure BFFH uses RBAC for access control

General BFFH Config is in bffh.dhall file.

Contains the Addresses BFFH is listen for Connection for the API Default Port for BFFH is
59661

Example:

Contains the Address for the MQTT Server BFFH connects to Example:

Contains the Path for the internal Database BFFH uses. BFFH will create two files:
<db_path> and <db_path>-lock . Make sure that BFFH has write access in the relevant
directory Example:

BFFH uses a Path-style string as permission format, separated by ".". So for example
this.is.a.permission consists of the parts this , is , a and permission . When requireing
permissions, such as in machines you always need to give an exact permission, so for
example test.write . When granting permissions, such as in roles you can either give an

30.09.2021 // Config Docs

General BFFH Config

listens

listens =
[
 { address = "127.0.0.1", port = Some 59661 }
]

mqtt_url

mqtt_url = "tcp://localhost:1883"

db_path

db_path = "/tmp/bffh"

Permissions

https://dhall-lang.org/
https://en.wikipedia.org/wiki/Role-based_access_control

exact permission or you can use the two wildcards * and + . These wildcards behave
similar to regex or bash wildcards:

* grants all permissions in that subtree. So, perms.read.* will match for any of:
perms.read
perms.read.machineA
perms.read.machineB
perms.read.machineC.manage

+ grants all permissions below that one. So, perms.read.+ will match for any of:
perms.read.machineA
perms.read.machineB
perms.read.machineC.manage
but not perms.read

Wildcards are probably most useful if you group you machines around them, e.g. your 3D-
printers and your one bandsaw require:

1. Write permissions
machines.printers.write.prusa.sl1
machines.printers.write.prusa.i3
machines.printers.write.anycubic
machines.bandsaws.write.bandsaw1

2. Manage permissions
machines.printers.manage.prusa.sl1
machines.printers.manage.prusa.i3
machines.printers.manage.anycubic
machines.bandsaws.manage.bandsaw1

3. Admin permissions
machines.printers

For all printers
machines.bandsaws

For all bandsaws

And you then give roles permissions like so:

Use any 3D printer:
machines.printers.write.+

Only allow use of the "cheap" printers
machines.printers.write.anycubic.*
machines.printers.write.prusa.i3

Allow managing of printers:
machines.printers.+

Allow administrating printers:
machines.printers.*

This way if you buy a different anycubic and split the permissions to e.g.

machines.printers.write.anycubic.i3
machines.printers.write.anycubic.megax

It still works out.

Machine Config is in machine.dhall file.

Contains list of machines

Machines have different perission levels to interact with:

disclose: User can see the machine in machine list
read: User can read information about the machine and there state
write: User can use the machine
manage: User can interact with the machine as Manager (Check, ForceFree,
ForceTransfer)

Example:

Machine Config

machines

machines =
{
 Testmachine =
 {
 name = "Testmachine",
 description = Some "A test machine",
 disclose = "lab.test.read",
 read = "lab.test.read",
 write = "lab.test.write",
 manage = "lab.test.admin"
 }
}

Roles Config is in roles.dhall file.

Contains list of roles

Roles have a list of permission and can be inherited. Permission can be wildcard in
permission list.

Example:

Actors Config is in actors.dhall file.

Roles Config

roles

roles =
{
 testrole =
 {
 permissions = ["lab.test.*"]
 },
 somerole =
 {
 parents = ["testparent"],
 permissions = ["lab.some.admin"]
 },
 testparent =
 {
 permissions =
 [
 "lab.some.write",
 "lab.some.read",
 "lab.some.disclose"
]
 }
}

Actors Config

actors

Contains list of actors Actors are defined by a module and one or more paramters

Currenty supported actors: Shelly Parameters: id = ID of the Shelly

Process Parameters: cmd = Path of executable args = Arguments for executable

Example:

Connects the actor with a machine A machine can have multiple actors Example:

actors =
{
 Shelly_1234 = { module = "Shelly", params =
 {
 id = "12345"
 }},
 Bash = { module = "Process", params =
 {
 cmd = "./examples/actor.sh",
 args = "your ad could be here"
 }}
}

actor_connections

actor_connections =
[
 { _1 = "Testmachine", _2 = "Shelly_1234" },
 { _1 = "Another", _2 = "Bash" },
 { _1 = "Yetmore", _2 = "Bash2" }
]

Version #2
Erstellt: 15 Oktober 2024 10:21:42 von Mario Voigt (Stadtfabrikanten e.V.)
Zuletzt aktualisiert: 14 Dezember 2024 18:23:07 von Mario Voigt (Stadtfabrikanten e.V.)

